Experimental Comparison of Iterative Versus Evolutionary Crisp and Rough Clustering

نویسندگان

  • Pawan Lingras
  • Manish Joshi
چکیده

Researchers have proposed several Genetic Algorithm (GA) based crisp clustering algorithms. Rough clustering based on Genetic Algorithms, Kohonen Self-Organizing Maps, K-means algorithm are also reported in literature. Recently, researchers have combined GAs with iterative rough clustering algorithms such as K-means and K-Medoids. Use of GAs makes it possible to specify explicit optimization of cluster validity measures. However, it can result in additional computing time. In this paper we compare results obtained using K-means, GA K-means, rough K-means, GA rough K-means and GA rough K-medoid algorithms. We experimented with a synthetic data set, a real world data set, and a standard dataset using a total within cluster variation, average precision, and execution time required as the criteria for comparison.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The ensemble clustering with maximize diversity using evolutionary optimization algorithms

Data clustering is one of the main steps in data mining, which is responsible for exploring hidden patterns in non-tagged data. Due to the complexity of the problem and the weakness of the basic clustering methods, most studies today are guided by clustering ensemble methods. Diversity in primary results is one of the most important factors that can affect the quality of the final results. Also...

متن کامل

Evolutionary User Clustering Based on Time-Aware Interest Changes in the Recommender System

The plenty of data on the Internet has created problems for users and has caused confusion in finding the proper information. Also, users' tastes and preferences change over time. Recommender systems can help users find useful information. Due to changing interests, systems must be able to evolve. In order to solve this problem, users are clustered that determine the most desirable users, it pa...

متن کامل

Concordance indices for comparing fuzzy, possibilistic, rough and grey partitions

Many indices have been proposed in literature for the comparison of two crisp data partitions, as resulting from two different classifications attempts, two different clustering solutions or the comparison of a predicted vs. a true labelling. Crisp partitions however cannot model ambiguity, vagueness or uncertainty in class definition and thus are not suitable to model all cases where informati...

متن کامل

Data Clustering using Artificial Neural Network, Rough set Theory and Optimization Techniques

Artificial Neural Network in particular Self Organizing Map (SOM) has been widely used in clustering analysis operations. SOM maps high dimensional data space into two dimensions colored grid. The crisp clustering which employs one threshold to determine cluster boundaries has poor performance in many complex and high dimension data sets. In this paper to improve the performance of clustering a...

متن کامل

Evolutionary Fuzzy Rules for Ordinal Binary Classification with Monotonicity Constraints

We present an approach to learn fuzzy binary decision rules from ordinal temporal data where the task is to classify every instance at each point in time. We assume that one class is preferred to the other, e.g. the undesirable class must not be misclassified. Hence it is appealing to use the Variable Consistency Dominance-based Rough Set Approach (VC-DRSA) to exploit preference information abo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Computational Intelligence Systems

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2011